Contact:
EVEN -
Evolutionary Engineering AG
Technoparkstrasse 1
8005 Zürich
Switzerland
t: +41 (0)44 500 93 60
f: +41 (0)44 500 93 61
OpLyX Print E-mail

OpLyX - The Optimization Platform

Overview 

OpLyX is a generally applicable optimization platform for parameter optimizations. OpLyX incorporates a powerful and versatile optimization algorithm which has proven its effectiveness for many engineering applications. This built-in optimization engine is based on an Evolutionary Algorithm which can handle arbitrary solution processes and a mix of discrete and continuous optimization variables. The Evolutionary Algorithm is equipped with a unique constraining method that allows to set-up the optimization problem efficiently.
OpLyX works with arbitrary simulation tools such as CATIA, ABAQUS, ANSYS, NASTRAN, MATLAB, etc. Furthermore, several simulation tools can be combined to a sequence to solve highly sophisticated engineering problems.
Optimization runs with OpLyX can either be set up on a single computer or in a multi processor environment.  Such parallel computations use standard queuing systems or in an office environment OpLyX can set up a workstation cluster. OpLyX can be expanded with various optimization strategies such design of experiment, gradient based strategies, etc.

Core Functionality

OpLyX stores all ever created individuals in a database together with computed results. As default backend OpLyX uses a MySQL server to store the individual solutions to an optimization task. Algorithm Daemons interact with the database, create new solutions to the optimization task and write them to the database. Evaluator deamons search the database for solutions which have not yet been evaluated and distribute the evaluation task to idle computers.
All interactions with the database and the daemons are performed via a user friendly Python interface. Online monitoring of individual evaluation processes and of the entire optimization run is available.

OpLyX concept graph

Key features of OpLyX

  • Storage of all solutions which have ever been evaluated
  •  Parallel evaluation on workstation clusters or with a queuing system
  • Online monitoring of all running jobs
  • Online monitoring of the optimization process
  • Works with arbitrary simulation tools
  • Handles entire sequences of simulation tools for complex evaluations

Key features of the Evolutionary Algorithm

  •  Robust search algorithm even in noisy design spaces
  • Mix of discrete and continuous optimization variables allows to set-up the optimization close to its real counterpart
  • Smart constraining method handles multiple constraints simultaneously


Supported Platforms

  • 32 and 64 bit Windows and Linux
  • Queuing systems LSF, PBS, SGE

OpLyX Optimized Structures